有效利用多模式输入以进行准确的RGB-D显着性检测是一个引起人们兴趣的话题。大多数现有作品都利用跨模式的交互来融合RGB-D的两个流以进行中间功能的增强。在此过程中,尚未完全考虑可用深度质量低的实际方面。在这项工作中,我们的目标是RGB-D显着性检测,这对低质量的深度具有鲁棒性,这些深度主要出现在两种形式:由于噪声和对RGB的错位而导致的不准确。为此,我们提出了一种强大的RGB-D融合方法,该方法从(1)层方面受益,以及(2)三叉戟的空间,注意机制。一方面,根据深度精度,层次的注意力(LWA)学习了RGB和深度特征的早期和晚期融合之间的权衡。另一方面,三叉戟的空间注意力(TSA)汇总了更广泛的空间环境中的特征,以解决深度错位问题。所提出的LWA和TSA机制使我们能够有效利用多模式输入以进行显着检测,同时对低质量的深度进行健壮。我们在五个基准数据集上进行的实验表明,所提出的融合方法的性能始终如一要比最先进的融合替代方案更好。
translated by 谷歌翻译
由于从输入方面互补的方式,RGB-D语义细分引发了研究的兴趣。现有作品通常采用两流体系结构,该体系结构并行处理光度法和几何信息,很少有方法明确利用深度线索的贡献来调整RGB图像上的采样位置。在本文中,我们提出了一个新颖的框架,以将深度信息纳入RGB卷积神经网络(CNN),称为Z-ACN(深度适应的CNN)。具体而言,我们的Z-ACN生成了一个2D适应的偏移量,该偏移完全受到低级功能的约束,以指导RGB图像上的特征提取。通过生成的偏移,我们引入了两个直观有效的操作,以取代基本的CNN操作员:深度适应的卷积和深度适应的平均池。对室内和室外语义分割任务的广泛实验证明了我们方法的有效性。
translated by 谷歌翻译
In this paper, we present a framework for learning quadruped navigation by integrating central pattern generators (CPGs), i.e. systems of coupled oscillators, into the deep reinforcement learning (DRL) framework. Through both exteroceptive and proprioceptive sensing, the agent learns to modulate the intrinsic oscillator setpoints (amplitude and frequency) and coordinate rhythmic behavior among different oscillators to track velocity commands while avoiding collisions with the environment. We compare different neural network architectures (i.e. memory-free and memory-enabled) which learn implicit interoscillator couplings, as well as varying the strength of the explicit coupling weights in the oscillator dynamics equations. We train our policies in simulation and perform a sim-to-real transfer to the Unitree Go1 quadruped, where we observe robust navigation in a variety of scenarios. Our results show that both memory-enabled policy representations and explicit interoscillator couplings are beneficial for a successful sim-to-real transfer for navigation tasks. Video results can be found at https://youtu.be/O_LX1oLZOe0.
translated by 谷歌翻译
Deep spiking neural networks (SNNs) offer the promise of low-power artificial intelligence. However, training deep SNNs from scratch or converting deep artificial neural networks to SNNs without loss of performance has been a challenge. Here we propose an exact mapping from a network with Rectified Linear Units (ReLUs) to an SNN that fires exactly one spike per neuron. For our constructive proof, we assume that an arbitrary multi-layer ReLU network with or without convolutional layers, batch normalization and max pooling layers was trained to high performance on some training set. Furthermore, we assume that we have access to a representative example of input data used during training and to the exact parameters (weights and biases) of the trained ReLU network. The mapping from deep ReLU networks to SNNs causes zero percent drop in accuracy on CIFAR10, CIFAR100 and the ImageNet-like data sets Places365 and PASS. More generally our work shows that an arbitrary deep ReLU network can be replaced by an energy-efficient single-spike neural network without any loss of performance.
translated by 谷歌翻译
Recently, extensive studies on photonic reinforcement learning to accelerate the process of calculation by exploiting the physical nature of light have been conducted. Previous studies utilized quantum interference of photons to achieve collective decision-making without choice conflicts when solving the competitive multi-armed bandit problem, a fundamental example of reinforcement learning. However, the bandit problem deals with a static environment where the agent's action does not influence the reward probabilities. This study aims to extend the conventional approach to a more general multi-agent reinforcement learning targeting the grid world problem. Unlike the conventional approach, the proposed scheme deals with a dynamic environment where the reward changes because of agents' actions. A successful photonic reinforcement learning scheme requires both a photonic system that contributes to the quality of learning and a suitable algorithm. This study proposes a novel learning algorithm, discontinuous bandit Q-learning, in view of a potential photonic implementation. Here, state-action pairs in the environment are regarded as slot machines in the context of the bandit problem and an updated amount of Q-value is regarded as the reward of the bandit problem. We perform numerical simulations to validate the effectiveness of the bandit algorithm. In addition, we propose a multi-agent architecture in which agents are indirectly connected through quantum interference of light and quantum principles ensure the conflict-free property of state-action pair selections among agents. We demonstrate that multi-agent reinforcement learning can be accelerated owing to conflict avoidance among multiple agents.
translated by 谷歌翻译
Fingerprints are key tools in climate change detection and attribution (D&A) that are used to determine whether changes in observations are different from internal climate variability (detection), and whether observed changes can be assigned to specific external drivers (attribution). We propose a direct D&A approach based on supervised learning to extract fingerprints that lead to robust predictions under relevant interventions on exogenous variables, i.e., climate drivers other than the target. We employ anchor regression, a distributionally-robust statistical learning method inspired by causal inference that extrapolates well to perturbed data under the interventions considered. The residuals from the prediction achieve either uncorrelatedness or mean independence with the exogenous variables, thus guaranteeing robustness. We define D&A as a unified hypothesis testing framework that relies on the same statistical model but uses different targets and test statistics. In the experiments, we first show that the CO2 forcing can be robustly predicted from temperature spatial patterns under strong interventions on the solar forcing. Second, we illustrate attribution to the greenhouse gases and aerosols while protecting against interventions on the aerosols and CO2 forcing, respectively. Our study shows that incorporating robustness constraints against relevant interventions may significantly benefit detection and attribution of climate change.
translated by 谷歌翻译
We discuss pattern languages for closed pattern mining and learning of interval data and distributional data. We first introduce pattern languages relying on pairs of intersection-based constraints or pairs of inclusion based constraints, or both, applied to intervals. We discuss the encoding of such interval patterns as itemsets thus allowing to use closed itemsets mining and formal concept analysis programs. We experiment these languages on clustering and supervised learning tasks. Then we show how to extend the approach to address distributional data.
translated by 谷歌翻译
The long-distance agreement, evidence for syntactic structure, is increasingly used to assess the syntactic generalization of Neural Language Models. Much work has shown that transformers are capable of high accuracy in varied agreement tasks, but the mechanisms by which the models accomplish this behavior are still not well understood. To better understand transformers' internal working, this work contrasts how they handle two superficially similar but theoretically distinct agreement phenomena: subject-verb and object-past participle agreement in French. Using probing and counterfactual analysis methods, our experiments show that i) the agreement task suffers from several confounders which partially question the conclusions drawn so far and ii) transformers handle subject-verb and object-past participle agreements in a way that is consistent with their modeling in theoretical linguistics.
translated by 谷歌翻译
Predicting the physical interaction of proteins is a cornerstone problem in computational biology. New classes of learning-based algorithms are actively being developed, and are typically trained end-to-end on protein complex structures extracted from the Protein Data Bank. These training datasets tend to be large and difficult to use for prototyping and, unlike image or natural language datasets, they are not easily interpretable by non-experts. We present Dock2D-IP and Dock2D-IF, two "toy" datasets that can be used to select algorithms predicting protein-protein interactions$\unicode{x2014}$or any other type of molecular interactions. Using two-dimensional shapes as input, each example from Dock2D-IP ("interaction pose") describes the interaction pose of two shapes known to interact and each example from Dock2D-IF ("interaction fact") describes whether two shapes form a stable complex or not. We propose a number of baseline solutions to the problem and show that the same underlying energy function can be learned either by solving the interaction pose task (formulated as an energy-minimization "docking" problem) or the fact-of-interaction task (formulated as a binding free energy estimation problem).
translated by 谷歌翻译
We present a way to create small yet difficult model counting instances. Our generator is highly parameterizable: the number of variables of the instances it produces, as well as their number of clauses and the number of literals in each clause, can all be set to any value. Our instances have been tested on state of the art model counters, against other difficult model counting instances, in the Model Counting Competition. The smallest unsolved instances of the competition, both in terms of number of variables and number of clauses, were ours. We also observe a peak of difficulty when fixing the number of variables and varying the number of clauses, in both random instances and instances built by our generator. Using these results, we predict the parameter values for which the hardest to count instances will occur.
translated by 谷歌翻译